Solving nonlinear eigenvalue problems
نویسندگان
چکیده
منابع مشابه
Solving Nonlinear Eigenvalue Problems using an Improved Newton Method
Finding approximations to the eigenvalues of nonlinear eigenvalue problems is a common problem which arises from many complex applications. In this paper, iterative algorithms for finding approximations to the eigenvalues of nonlinear eigenvalue problems are verified. These algorithms use an efficient numerical approach for calculating the first and second derivatives of the determinant of the ...
متن کاملSolving Rational Eigenvalue Problems via Linearization
The rational eigenvalue problem is an emerging class of nonlinear eigenvalue problems arising from a variety of physical applications. In this paper, we propose a linearization-based method to solve the rational eigenvalue problem. The proposed method converts the rational eigenvalue problem into a well-studied linear eigenvalue problem, and meanwhile, exploits and preserves the structure and p...
متن کاملNonlinear Rayleigh-ritz Iterative Method for Solving Large Scale Nonlinear Eigenvalue Problems
A nonlinear Rayleigh-Ritz iterative (NRRIT) method for solving nonlinear eigenvalue problems is studied in this paper. It is an extension of the nonlinear Arnoldi algorithm due to Heinrich Voss. The effienicy of the NRRIT method is demonstrated by comparing with inverse iteration methods to solve a highly nonlinear eigenvalue problem arising from finite element electromagnetic simulation in acc...
متن کاملThe Discrete Dynamical Functional Particle Method for Solving Constrained Optimization Problems
The dynamical functional particle method (DFPM) is a method for solving equations by using a damped second order dynamical system. The dynamical system is solved by a symplectic method that is especially tailored for conservative systems. In this work we have extended DFPM to convex optimization problems with constraints. The method is tested on linear eigenvalue problems with normalization and...
متن کاملFEAST Eigensolver for Nonlinear Eigenvalue Problems
The linear FEAST algorithm is a method for solving linear eigenvalue problems. It uses complex contour integration to calculate the eigenvectors whose eigenvalues that are located inside some user-defined region in the complex plane. This makes it possible to parallelize the process of solving eigenvalue problems by simply dividing the complex plane into a collection of disjoint regions and cal...
متن کامل